On C∗-algebras associated with C∗-correspondences
نویسندگان
چکیده
منابع مشابه
Ideal Structure of C * -algebras Associated with C * -correspondences
We study the ideal structure of C∗-algebras arising from C∗-correspondences. We prove that gauge-invariant ideals of our C∗-algebras are parameterized by certain pairs of ideals of original C∗-algebras. We show that our C∗-algebras have a nice property which should be possessed by generalization of crossed products. Applications to crossed products by Hilbert C∗-bimodules and relative Cuntz-Pim...
متن کامل2 00 3 Ideal Structure of C ∗ - Algebras Associated with C ∗ - Correspondences
We study the ideal structure of C∗-algebras arising from C∗-correspondences. We prove that gauge-invariant ideals of our C∗-algebras are parameterized by certain pairs of ideals of original C∗-algebras. We show that our C∗-algebras have a nice property which should be possessed by generalization of crossed products. Applications to crossed products by Hilbert C∗-bimodules and relative Cuntz-Pim...
متن کاملTensor Algebras of C∗-correspondences and Their C∗-envelopes.
We show that the C *-envelope of the tensor algebra of an arbitrary C *-correspondence X coincides with the Cuntz-Pimsner algebra O X , as defined by Katsura [7]. This improves earlier results of Muhly and Solel [13] and Fowler, Muhly and Raeburn [5], who came to the same conclusion under the additional hypothesis that X is strict and faithful.
متن کاملA construction of C∗-algebras from C∗-correspondences
We introduce a method to define C-algebras from C-correspondences. Our construction generalizes Cuntz-Pimsner algebras, crossed products by Hilbert C-modules, and graph algebras.
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2004
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2004.03.010